Kinetika Leaching Ni dan Fe dari Bijih Laterit Tipe Limonite Morowali

Gyan Prameswara, Flaviana Yohanala Prista Tyassena, Monita Pasaribu, Indhyca Novitha Febryanzha


Nickel (Ni) deposits are depleting, while demand for the metal is increasing. To address this problem, valuable metals such as Ni and Fe can be extracted from secondary sources such as limonite-type laterite ores. The goal of this study was to investigate the influence of leaching temperature on Ni and Fe recovery, as well as the best kinetic model to represent the leaching process of these metals. Temperature has a considerable impact on the leaching process of Ni and Fe. Increasing the temperature from 30 to 90 oC can increase the recovery of Ni by 50% and Fe by 70 %. Ni and Fe recoveries were highest at 93.21 % and 95 %, respectively. Kinetic analysis of the two metals' leaching processes was also performed. It was discovered that the diffusion process controls Ni leaching, which can be represented using the Zhuravlev kinetic model, whereas chemical reactions on the surface of the unreacted core controls Fe leaching. The activation energies for leaching Ni and Fe are 36.53 and 40.32 kJ/mol, respectively. 1930 exp ((-36.53 kJ/mol)/(R.T))t=[(1-X)-1/3)-1]2 is the kinetic equation for Ni leaching. The kinetic equation for Fe leaching is 3903 exp ((- 40.32 kJ/mol)/(R.T)t=1-(1-X)1/3.


Iron, Kinetic, Leaching, Nickel, Zhuravlev Model

Full Text:



J. Anderson, Y. Lu, O. Heathman, and J. Frasser, “Study on future demand and supply security of nickel for electric vehicle batteries,” Luxemburg, 2021. doi: 10.2760/212807.

M. Ustaoğlu and B. Yıldız, “Innovative Green TechnologyinTurkey: Electric Vehicles’Future and Forecasting Market Share,” Procedia - Soc. Behav. Sci., vol. 41, no. 11600, pp. 139–146, 2012, doi: 10.1016/j.sbspro.2012.04.018.

M. E. McRae, “Nickel-Mineral Commodity Summaries, January 2021,” New York, 2021.

D. Dreisinger, “Keynote address: Hydrometallurgical process development for complex ores and concentrates,” J. South. African Inst. Min. Metall., vol. 109, no. 5, pp. 253–271, 2009, [Online]. Available:

F. Crundwell, M. Moats, T. Robinson, V. Ramachandran, and W. . Davenport, “Extractive Metallurgy of Nickel and Cobalt,” Extractive Metallurgy of Nickel,Cobalt and Platinim Group Metals. pp. 489–534, 2011.

S. Stopic, B. Friedrich, and R. Fuchs, “Sulphuric acid leaching of the Serbian nickel lateritic ore,” Erzmetall J. Explor. Min. Metall., vol. 56, no. 4, pp. 204–209, 2003.

S. Hidayat, S. Yulianti, D. Anggreini, and S. Bahtiar, “Study of Nickel Leaching Using Sulfuric Acid and Phosphoric Acid on The Selectivity Nickel Ore,” J. Pijar Mipa, vol. 16, no. 3, pp. 393–396, 2021, doi: 10.29303/jpm.v16i3.2602.

T. Agacayak, V. Zedef, and A. Aras, “Kinetic study on leaching of nickel from Turkish lateritic ore in nitric acid solution,” J. Cent. South Univ., vol. 23, no. 1, pp. 39–43, 2016, doi: 10.1007/s11771-016-3046-8.

W. Luo, Q. Feng, L. Ou, G. Zhang, and Y. Chen, “Kinetics of saprolitic laterite leaching by sulphuric acid at atmospheric pressure,” Miner. Eng., vol. 23, no. 6, pp. 458–462, 2010, doi: 10.1016/j.mineng.2009.10.006.

S. Javanshir, Z. H. Mofrad, and A. Azargoon, “Atmospheric pressure leaching of nickel from a low-grade nickel-bearing ore,” Physicochem. Probl. Miner. Process., vol. 54, no. 3, pp. 890–900, 2018, doi: 10.5277/ppmp1891.

M. Hosseini Nasab, M. Noaparast, and H. Abdollahi, “Dissolution optimization and kinetics of nickel and cobalt from iron-rich laterite ore, using sulfuric acid at atmospheric pressure,” Int. J. Chem. Kinet., vol. 52, no. 4, pp. 283–298, 2020, doi: 10.1002/kin.21349.

E. O. Olanipekun, “Kinetics of leaching laterite,” Int. J. Miner. Process., vol. 60, no. 1, pp. 9–14, 2000, doi: 10.1016/S0301-7516(99)00067-8.

J. MacCarthy, A. Nosrati, W. Skinner, and J. Addai-Mensah, “Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low grade saprolitic nickel laterite ore,” Hydrometallurgy, vol. 160, pp. 26–37, 2016, doi: 10.1016/j.hydromet.2015.11.004.

C. F. Dickinson and G. R. Heal, “Solid–liquid diffusion controlled rate equations,” Thermochim. Acta, vol. 340–341, pp. 89–103, Dec. 1999, doi: 10.1016/S0040-6031(99)00256-7.

O. Levenspiel, Chemical Reaction Engineering, 3rd ed. Oregon: John Wiley and Sons, 1999. doi: 10.1201/9781420014389.ch11.

W. Xiao, X. Liu, and Z. Zhao, “Kinetics of nickel leaching from low-nickel matte in sulfuric acid solution under atmospheric pressure,” Hydrometallurgy, vol. 194, no. April, p. 105353, 2020, doi: 10.1016/j.hydromet.2020.105353.

C. F. Dickinson and G. R. Heal, “A review of the ICTAC Kinetics Project, 2000. Part 1. Isothermal results,” Thermochim. Acta, vol. 494, no. 1–2, pp. 1–14, 2009, doi: 10.1016/j.tca.2009.05.003.

H. Hatimah, I. Amin, F. Y. P. Tyassena, and G. Prameswara, “PENGARUH KOMINUSI DENGAN MENGGUNAKAN BALL MILL TERHADAP KARAKTERISTIK ORE NIKEL DARI MOROWALI,” J. Teknol. Kim. Miner., vol. 1, no. 1, pp. 10–13, 2022, [Online]. Available:

G. Prameswara, F. Y. P. Tyassena, and P. D. C. Perkasa, “EVALUASI SISTEM KOMINUSI PRIMER PADA BENEFISIASI COPPER-BEARING-MINERAL,” J. Teknol. Kim. Miner., vol. 1, no. 1, pp. 1–5, 2022, [Online]. Available:

W. Astuti, T. Hirajima, K. Sasaki, and N. Okibe, “Kinetics of nickel extraction from Indonesian saprolitic ore by citric acid leaching under atmospheric pressure,” Mining, Metall. Explor., vol. 32, no. 3, pp. 176–185, Aug. 2015, doi: 10.1007/BF03402286.

G. Prameswara, I. Trisnawati, P. Mulyono, A. Prasetya, and H. T. B. M. Petrus, “Leaching Behaviour and Kinetic of Light and Heavy Rare Earth Elements (REE) from Zircon Tailings in Indonesia,” JOM, vol. 73, no. 4, pp. 988–998, Apr. 2021, doi: 10.1007/s11837-021-04584-3.

G. Prameswara, I. Trisnawati, H. Poernomo, P. Mulyono, A. Prasetya, and H. T. B. M. Petrus, “Kinetics of Yttrium Dissolution from Alkaline Fusion on Zircon Tailings,” Mining, Metall. Explor., vol. 37, no. 4, pp. 1297–1305, Aug. 2020, doi: 10.1007/s42461-020-00220-x.


  • There are currently no refbacks.