Hidrolisis Limbah Kulit Pisang (Musa acuminata) Menggunakan Katalis Asam untuk Produksi Bioetanol

Zuhriyan Ash shiddieqy Bahlawan, Megawati Megawati, Bayu Triwibowo, Alfiansyah Aji Pratama, Zefanya Pradiza, Anggun Septiamurti

Abstract

Banana is one of the fruits that can thrive in Indonesia. This plant is often found in tropical soils with slightly moist soil conditions. However, banana peels are underutilized and are only disposed of as agricultural waste. On the other hand, the carbohydrate content of banana peels is still quite high, reaching 12.2% so it can be used as raw material for making bioethanol. Carbohydrates in the substrate cannot be directly converted into bioethanol but need to be pretreated first to break down polysaccharides into monosaccharides. In this research, the pretreatment process of carbohydrate hydrolysis from banana peels into reducing sugars is studied. From the studies, the reducing sugar concentration was obtained with banana peels substrate concentration of 20 g/L, 5 M of sulfuric acid concentration, and an optimum hydrolysis time of 70 minutes with the obtained reducing sugar reach 16.82 g/L. Reducing sugar can be converted into bioethanol by fermentation process with S. cerevisiae yeast. It is hoped that these studies can provide an initial impact on the development of alternative energy based on biomass and utilization of banana peel waste.

Keywords

Banana peels, Bioethanol, Hydrolysis, Reducing Sugar

Full Text:

PDF

References

H. Yanto, A. Rofiah, and Z. A. S. Bahlawan, “Environmental Performance and Carbon Emission Disclosures: A case of Indonesian Manufacturing Companies,” in Journal of Physics: Conference Series, Dec. 2019, vol. 1387, no. 1, p. 12005. doi: 10.1088/1742-6596/1387/1/012005.

M. Megawati, zuhriyan ash shiddieqy bahlawan, A. damayanti, R. D. A. Putri, B. Triwibowo, and H. Prasetiawan, “Comparative study on the various hydrolysis and fermentation methods of Chlorella vulgaris biomass for the production of bioethanol,” Int. J. Renew. Energy Dev., vol. 0, no. 0, Dec. 2021, doi: 10.14710/IJRED.2022.41696.

A. C. Kumoro, A. Damayanti, Z. A. S. Bahlawan, M. Melina, and H. Puspawati, “Bioethanol production from oil palm empty fruit bunches using saccharomyces cerevisiae immobilized on sodium alginate beads,” Period. Polytech. Chem. Eng., vol. 65, no. 4, pp. 493–504, 2021, doi: 10.3311/PPch.16775.

Z. A. S. Bahlawan et al., “Immobilization of Saccharomyces cerevisiae in Jackfruit (Artocarpus heterophyllus) Seed Fiber for Bioethanol Production,” ASEAN J. Chem. Eng., vol. 22, no. 1, pp. 156–167, Jun. 2022, doi: 10.22146/AJCHE.69781.

Z. Luo, L. Wang, and A. Shahbazi, “Optimization of ethanol production from sweet sorghum (Sorghum bicolor) juice using response surface methodology,” Biomass and Bioenergy, vol. 67, pp. 53–59, Aug. 2014, doi: 10.1016/j.biombioe.2014.04.003.

F. M. Gírio, C. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, and R. Bogel-Łukasik, “Hemicelluloses for fuel ethanol: A review,” Bioresource Technology, vol. 101, no. 13. Elsevier, pp. 4775–4800, Jul. 01, 2010. doi: 10.1016/j.biortech.2010.01.088.

L. F. Li, M. Häkkinen, Y. M. Yuan, G. Hao, and X. J. Ge, “Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa,” Mol. Phylogenet. Evol., vol. 57, no. 1, pp. 1–10, Oct. 2010, doi: 10.1016/j.ympev.2010.06.021.

P. M. Waghmare, P. G. Bedmutha, and S. B. Sollapur, “Investigation of effect of hybridization and layering patterns on mechanical properties of banana and kenaf fibers reinforced epoxy biocomposite,” Mater. Today Proc., Jan. 2021, doi: 10.1016/j.matpr.2020.11.194.

J. A. Fortescue and D. W. Turner, “Growth and development of ovules of banana, plantain and enset (Musaceae),” Sci. Hortic. (Amsterdam)., vol. 104, no. 4, pp. 463–478, May 2005, doi: 10.1016/j.scienta.2005.01.007.

M. Leonel, A. C. B. Bolfarini, M. J. Rodrigues da Silva, J. M. A. Souza, and S. Leonel, “Banana fruits with high content of resistant starch: Effect of genotypes and phosphorus fertilization,” Int. J. Biol. Macromol., vol. 150, pp. 1020–1026, May 2020, doi: 10.1016/j.ijbiomac.2019.10.217.

A. H. Hashem, E. Saied, and M. S. Hasanin, “Green and ecofriendly bio-removal of methylene blue dye from aqueous solution using biologically activated banana peel waste,” Sustain. Chem. Pharm., vol. 18, p. 100333, Dec. 2020, doi: 10.1016/j.scp.2020.100333.

M. E. de Matos, A. Bianchi Pedroni Medeiros, G. V. de Melo Pereira, V. T. Soccol, and C. R. Soccol, “Production and characterization of a distilled alcoholic beverage obtained by fermentation of banana waste (Musa cavendishii) from selected yeast,” Fermentation, vol. 3, no. 4, 2017, doi: 10.3390/fermentation3040062.

D. Deb, N. Mallick, and P. B. S. Bhadoria, “Engineering culture medium for enhanced carbohydrate accumulation in Anabaena variabilis to stimulate production of bioethanol and other high-value co-products under cyanobacterial refinery approach,” Renew. Energy, vol. 163, pp. 1786–1801, Jan. 2021, doi: 10.1016/j.renene.2020.10.086.

Megawati, A. Damayanti, R. D. A. Putri, Z. A. S. Bahlawan, A. A. D. Mastuti, and R. A. Tamimi, “Hydrolysis of S. platensis Using Sulfuric Acid for Ethanol Production,” Mater. Sci. Forum, vol. 1048 MSF, no. 2, pp. 451–458, 2022, doi: 10.4028/www.scientific.net/MSF.1048.451.

Z. A. S. Bahlawan, A. Damayanti, N. Arif Majid, A. Herstyawan, and R. A. Hapsari, “Gembili (Dioscorea esculenta) tube modification via hydrogen peroxide oxidation,” J. Phys. Conf. Ser., vol. 1444, no. 1, 2020, doi: 10.1088/1742-6596/1444/1/012007.

H. S. Hafid, A. R. Nor ‘Aini, M. N. Mokhtar, A. T. Talib, A. S. Baharuddin, and M. S. Umi Kalsom, “Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment,” Waste Manag., vol. 67, pp. 95–105, Sep. 2017, doi: 10.1016/j.wasman.2017.05.017.

T. Ohra-aho, F. J. B. Gomes, J. L. Colodette, and T. Tamminen, “Carbohydrate composition in Eucalyptus wood and pulps – Comparison between Py-GC/MS and acid hydrolysis,” J. Anal. Appl. Pyrolysis, vol. 129, pp. 215–220, Jan. 2018, doi: 10.1016/j.jaap.2017.11.010.

I. Kim, Y. H. Seo, G. Y. Kim, and J. I. Han, “Co-production of bioethanol and biodiesel from corn stover pretreated with nitric acid,” Fuel, vol. 143, pp. 285–289, Mar. 2015, doi: 10.1016/j.fuel.2014.11.031.

M. U. Ude, I. Oluka, and P. C. Eze, “Optimization and kinetics of glucose production via enzymatic hydrolysis of mixed peels,” J. Bioresour. Bioprod., vol. 5, no. 4, pp. 283–290, Nov. 2020, doi: 10.1016/j.jobab.2020.10.007.

H. Shokrkar, S. Ebrahimi, and M. Zamani, “Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture,” Fuel, vol. 200, pp. 380–386, Jul. 2017, doi: 10.1016/j.fuel.2017.03.090.

J. Hou, X. Zhang, S. Zhang, K. Wang, and Q. Zhang, “Enhancement of bioethanol production by a waste biomass-based adsorbent from enzymatic hydrolysis,” J. Clean. Prod., vol. 291, p. 125933, Apr. 2021, doi: 10.1016/j.jclepro.2021.125933.

Megawati et al., “Bioethanol production from glucose obtained from enzymatic hydrolysis of Chlorella microalgae,” Mater. Today Proc., Apr. 2022, doi: 10.1016/J.MATPR.2022.03.551.

K. H. Lee, I. S. Choi, Y. G. Kim, D. J. Yang, and H. J. Bae, “Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads,” Bioresour. Technol., vol. 102, no. 17, pp. 8191–8198, Sep. 2011, doi: 10.1016/j.biortech.2011.06.063.

B. Ortiz-Muñiz, O. Carvajal-Zarrabal, B. Torrestiana-Sanchez, and M. G. Aguilar-Uscanga, “Kinetic study on ethanol production using Saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses,” J. Chem. Technol. Biotechnol., vol. 85, no. 10, pp. 1361–1367, Oct. 2010, doi: 10.1002/jctb.2441.

J. Waluyo, D. Burhani, N. Hikmah, and Y. Sudiyani, “Immobilization of Saccharomyces cerevisiae using Ca-alginate for bioethanol production from empty fruit bunch of oil palm,” in AIP Conference Proceedings, Jan. 2017, vol. 1803, no. 1, p. 020016. doi: 10.1063/1.4973143.

A. Faizal, A. A. Sembada, and N. Priharto, “Production of bioethanol from four species of duckweeds (Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza) through optimization of saccharification process and fermentation with Saccharomyces cerevisiae,” Saudi J. Biol. Sci., vol. 28, no. 1, pp. 294–301, Jan. 2021, doi: 10.1016/j.sjbs.2020.10.002.

Q. Yu et al., “Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes,” Bioresour. Technol., vol. 129, pp. 592–598, Feb. 2013, doi: 10.1016/J.BIORTECH.2012.11.099.

L. Mezule, I. Berzina, and M. Strods, “The Impact of Substrate–Enzyme Proportion for Efficient Hydrolysis of Hay,” Energies 2019, Vol. 12, Page 3526, vol. 12, no. 18, p. 3526, Sep. 2019, doi: 10.3390/EN12183526.

R. F. Tester and M. D. Sommerville, “Swelling and Enzymatic Hydrolysis of Starch in Low Water Systems,” J. Cereal Sci., vol. 33, no. 2, pp. 193–203, Mar. 2001, doi: 10.1006/JCRS.2000.0350.

J. H. Northrop and H. S. Simms, “The Effect Of The Hydrogen Ion Concentration On The Rate Of Hydrolysis Of Glycyl Glycine, Glycyl Leucine, Glycyl Alanine, Glycyl Asparagine, Glycyl Aspartic Acid, And Biuret Base By Erepsin,” J. Gen. Physiol., vol. 12, no. 2, p. 313, Nov. 1928, doi: 10.1085/JGP.12.2.313.

P. K. Robinson, “Enzymes: principles and biotechnological applications,” Essays Biochem., vol. 59, p. 1, Nov. 2015, doi: 10.1042/BSE0590001.

Refbacks

  • There are currently no refbacks.