Pengaruh Doping Ca dan K pada γ-Al2O3 terhadap Sifat Fisik Katalis pada Transesterifikasi Minyak Kelapa

Eko Supriadi, Danawati Hadi Prajitno, Mahfud Mahfud, Ngatijo Ngatijo, Rahmat Basuki

Abstract

Metal doping plays important role in increasing catalytic activity of catalyst materials. In this work, Ca and K were doped to the γ-Al2O3 by dry impregnation method to study the crystallinity, surface area, activation energy, and yield in the coconut oil transesterification reaction. The success of doping was shown in the characterization of Ca/γ-Al2O3 and K/γ-Al23 using X-Ray Diffraction (XRD) which increasing in crystallinity from 62.2% (γ-Al2O3) to 69.3 (K/γ-Al2O3) and 76.0 (Ca/γ-Al2O3). The emerging peak of 2θ characteristics of K (29.70° and 32.65°) and Ca (25.35°, 26.77°, and 27.17°) on the γ-Al2O3 (37.66°, 45.82° and 67.22 °) was also observed. Characterization by the Surface Area Analyzer (SAA) shows that the K/γ-Al2O3 catalyst has a smaller surface area (34.03 m2/g) than Ca/γ-Al2O3 (83.77 m2/g), but a higher pore diameter (66.12 Å) than Ca/γ-Al2O3 (35.22 Å). The K/γ-Al23 catalyst produced greater FAME yield (93.19%) than Ca/γ-Al2O3 (29.76%) at a catalyst concentration of 2.5%, reaction time 150 s, and ultrasonic frequency of 40 kHz. The quality of the FAME catalyzed by K/γ-Al23 fulfills four test parameters: density, kinematic viscosity, flash point, and pour point according to SNI 04-7182-2006 standards.

Keywords

Alumina, Catalyst, Metal Doping, Transesterification

Full Text:

PDF

References

G. A. Nur Rohman, F. Fatmawati, and M. Mahfud, “Pembuatan Biodiesel dari Minyak Kelapa Menggunakan Microwave : Penggunaan Katalis KOH dengan Konsentrasi Rendah,” J. Tek. ITS, vol. 5, no. 2, pp. 225–227, 2016.

N. D. Mastutik, Heriyanti, L. S. Marningsih, and R. Basuki, “Bio-gasoline production of used cooking palm oil catalyzed by metal supported catalyst Ni/Natural Zeolite (Ni/NZ),” in Journal of Physics: Conference Series, 2018, vol. 1116, pp. 1–7.

E. Supriadi, L. Marlinda, D. H. Prajitno, and M. Mahfud, “Transesterification of coconut oil for FAME production using ultrasound,” in AIP Conference Proceedings, 2017, vol. 1840, no. 1, p. 40007.

N. Y. Yahya, N. Ngadi, S. Wong, and O. Hassan, “Transesterification of used cooking oil (UCO) catalyzed by mesoporous calcium titanate : Kinetic and thermodynamic studies,” Energy Convers. Manag. Manag., vol. 164, no. March, pp. 210–218, 2018.

D. D. Pukale, G. L. Maddikeri, P. R. Gogate, A. B. Pandit, and A. P. Pratap, “Ultrasonics Sonochemistry Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst,” Ultrason. - Sonochemistry, vol. 22, pp. 278–286, 2015.

M. Ulfah and S. Subagjo, “Pengaruh Perbedaan Sifat Penyangga Alumina Terhadap Sifat Katalis Hydrotreating Berbasis Nikel-Molibdenum,” Reaktor, vol. 14, no. 2, p. 151, 2012.

D. P. Ningtyas, “PENGARUH KATALIS BASA (NaOH) PADA TAHAP REAKSI TRANSESTERIFIKASI TERHADAP KUALITAS BIOFUEL DARI MINYAK TEPUNG IKAN SARDIN,” J. Teknosains, vol. 2, no. 2, pp. 103–114, 2013.

W. Wahyudin, A. H. Tambunan, N. Purwanti, J. Joelianingsih, and H. Nabetani, “Tinjauan Perkembangan Proses Katalitik Heterogen dan Non-Katalitik untuk Produksi Biodiesel,” J. Keteknikan Pertan., vol. 6, no. 2, pp. 123–130, 2018.

N. F. Fatimah and B. Utami, “Sintesis dan Analisis Spektra IR, Difraktogram XRD, SEM pada Material Katalis Berbahan Ni/zeolit Alam Teraktivasi dengan Metode Impregnasi,” JC-T (Journal Cis-Trans) J. Kim. Dan Ter., vol. 1, no. 1, 2017.

B. Benlahreche, A. Taleb, M. B. Lahrech, and S. Hacini, “Isatin Aldazines Synthesis using A Proton Exchanged Algerian Montmorillonite Clay as Acid Eco-friendly Catalyst,” Bull. Chem. React. Eng. & Catal., vol. 14, no. 3, pp. 551–558, 2019.

T. R. Agusti, D. Agustine, and I. Nurlatifah, “Esterifikasi Gliserol Produk Samping Biodiesel Menjadi Triasetin Menggunakan Katalis SO42-/TiO2,” J. Ilm. Fak. Tek., vol. 1, no. 3, pp. 290–297, 2020.

J. Monde, P. I. Kumalasari, and K. Nugroho, “Perengkahan Metil Ester dari Minyak Jelantah Menggunakan Katalis Pt/Al2O3,” CHEESA Chem. Eng. Res. Artic., vol. 2, no. 2, pp. 75–82, 2019.

L. Marlinda, “Rekayasa Katalis Double Promotor Berbasis Hierarchical H-ZSM-5 untuk Memproduksi Biofuel dari Minyak Nabati,” Institut Teknologi Sepuluh Nopember, 2017.

N. Ain, R. Rodiansono, and K. Mustikasari, “Efek Temperatur, Tekanan dan Waktu Reaksi pada Hidrogenasi Asam Heksadekanoat Menjadi 1-Eksadekanol Menggunakan Katalis Ru-Sn (3, 0)/C,” J. Kim. Sains dan Apl., vol. 22, no. 4, pp. 112–122, 2019.

K. Noiroj, P. Intarapong, A. Luengnaruemitchai, and S. Jai-In, “A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil,” Renew. energy, vol. 34, no. 4, pp. 1145–1150, 2009.

N. Pasupulety, K. Gunda, Y. Liu, G. L. Rempel, and F. T. T. Ng, “Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts,” Appl. Catal. A Gen., vol. 452, pp. 189–202, 2013.

J.-H. Yi, Y.-Y. Sun, J.-F. Gao, and C.-Y. Xu, “Synthesis of crystalline γ-Al2O3 with high purity,” Trans. Nonferrous Met. Soc. China, vol. 19, no. 5, pp. 1237–1242, 2009.

A. H. Fakeeha et al., “Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane,” Processes, vol. 8, no. 5, p. 522, 2020.

Y.-H. Chen et al., “Biodiesel production in a rotating packed bed using K/γ-Al2O3 solid catalyst,” J. Taiwan Inst. Chem. Eng., vol. 42, no. 6, pp. 937–944, 2011.

P. Kutálek, L. Čapek, L. Smoláková, D. Kubička, and M. Hájek, “Aspects of stability of K/Al2O3 catalysts for the transesterification of rapeseed oil in batch and fixed-bed reactors,” Chinese J. Catal., vol. 35, no. 7, pp. 1084–1090, 2014.

G. Chen, R. Shan, J. Shi, and B. Yan, “Ultrasonic-assisted production of biodiesel from transesterification of palm oil over ostrich eggshell-derived CaO catalysts,” Bioresour. Technol., vol. 171, pp. 428–432, 2014.

M. Hájek, F. Skopal, L. Čapek, M. Černoch, and P. Kutálek, “Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO,” Energy, vol. 48, no. 1, pp. 392–397, 2012.

O. Ilgen and A. N. Akin, “Development of alumina supported alkaline catalysts used for biodiesel production,” Turkish J. Chem., vol. 33, no. 2, pp. 281–287, 2009.

R. Alviany, M. P. Marbun, F. Kurniawansyah, and A. Roesyadi, “Proses produksi katalis gamma-Al2O3 menggunakan metode impregnasi,” J. Tek. Kim., vol. 12, no. 2, pp. 64–68, 2018.

H. Nayebzadeh, N. Saghatoleslami, M. Haghighi, and M. Tabasizadeh, “Catalytic Activity of KOH--CaO--Al 2 O 3 Nanocomposites in Biodiesel Production: Impact of Preparation Method,” Int. J. Self-Propagating High-Temperature Synth., vol. 28, no. 1, pp. 18–27, 2019.

A. G. Volkov, S. Paula, and D. W. Deamer, “Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers,” Bioelectrochemistry Bioenerg., vol. 42, no. 2, pp. 153–160, 1997.

N. P. Asri, K. Budikarjono, Suprapto, and A. Roesyadi, “Kinetics of palm oil transesterification using double promoted catalyst CaO/KI/γ-Al2O3,” J. Eng. Technol. Sci., vol. 47, no. 4, pp. 353–363, 2015.

V. Singh, M. Yadav, and Y. C. Sharma, “Effect of co-solvent on biodiesel production using calcium aluminium oxide as a reusable catalyst and waste vegetable oil,” Fuel, vol. 203, pp. 360–369, 2017.

A. Bouaid, R. Vázquez, M. Martinez, and J. Aracil, “Effect of free fatty acids contents on biodiesel quality. Pilot plant studies,” Fuel, vol. 174, no. February 2019, pp. 54–62, 2016.

Refbacks

  • There are currently no refbacks.