Intensifikasi Sintesis Diasetin dan Triasetin Melalui Esterifikasi Gliserol Dengan Katalis Berbasis Daun Bambu

Maysa Fitri, Marwan Marwan, Yanna Syamsuddin, Nanda Suriaini


The synthesis of acetins from glycerol is achieved through esterification assisted by a solid acid catalyst and microwave irradiation. Diacetin and triacetin, suitable as biofuel additives, are produced using biogenic silica from bamboo leaves, which is chemically activated with strong acid and calcined. No research has utilized silica catalysts derived from bamboo leaf ash to produce diacetin and triacetin. This study aims to employ bamboo leaf-based heterogeneous catalysts to enhance triacetin selectivity, simplify product purification and separation, and enable catalyst reuse. Furthermore, microwave application can accelerate the reaction time. The best total selectivity for diacetin and triacetin was obtained under operating conditions of 3% catalyst concentration, a 1:6 molar ratio, and 60 minutes of microwave irradiation. The yields of diacetin and triacetin under these conditions were 65.80% and 18.70%, respectively. GC-MS and FTIR analysis confirm the presence of monoacetin, diacetin, and triacetin, with a total selectivity for diacetin and triacetin of 84,50%.


Bamboo Leaf, Diacetin, Esterification, Microwave, Triacetin

Full Text:



A. Casas, Á. Pérez, and M. J. Ramos, “Effects of diacetinmonoglycerides and triacetin on biodiesel quality,” Energies, vol. 16, no. 17, 2023, doi: 10.3390/en16176146.

R. B. Cahyono, Z. Mufrodi, A. Hidayat, and A. Budiman, “Acetylation of glycerol for triacetin production using Zr-natural zeolite catalyst,” ARPN J. Eng. Appl. Sci., vol. 11, no. 8, pp. 5194–5197, 2016.

B. Zada, M. Kwon, and S.-W. Kim, “Current trends in acetins production: green versus non-green synthesis,” Molecules, vol. 27, no. 7. 2022. doi: 10.3390/molecules27072255.

M. E. Manríquez-Ramírez, M. Trejo-Valdez, L. V Castro, and E. Ortiz-Islas, “Acetylation of glycerol using acetic acid and heterogeneous MgO-KOH-Based catalysts to produce acetins,” Catal. Letters, vol. 154, no. 7, pp. 3294–3308, 2024, doi: 10.1007/s10562-023-04556-z.

I. Banu et al., “A kinetic study of glycerol esterification with acetic acid over a commercial amberlyst-35 ion exchange resin,” Rev. Chim, vol. 70, pp. 2325–2329, 2019, doi: 10.37358/rc.19.7.7332.

M. Bandyopadhyay, N. Tsunoji, R. Bandyopadhyay, and T. Sano, “Comparison of sulfonic acid loaded mesoporous silica in transesterification of triacetin,” React. Kinet. Mech. Catal., vol. 126, pp. 167–179, 2019, doi: 10.1007/s11144-018-1447-4.

R. L. Temóteo, M. J. da Silva, F. de Avila Rodrigues, W. F. da Silva, D. de Jesus Silva, and C. M. Oliveira, “A kinetic investigation of triacetin methanolysis and assessment of the stability of a sulfated zirconium oxide catalyst,” J. Am. Oil Chem. Soc., vol. 95, no. 7, pp. 865–874, 2018.

L. Setyaningsih, F. Siddiq, and A. Pramezy, “Esterification of glycerol with acetic acid over lewatit catalyst,” MATEC Web Conf., vol. 154, pp. 2–5, 2018, doi: 10.1051/matecconf/201815401028.

R. Manurung, H. Siregar, and R. R. S. Zuhri, “Synthesis and characterization of K-Silica catalyst based bamboo-leaves for transesterification reaction,” AIP Conf. Proc., vol. 2085, no. March 2019, 2019, doi: 10.1063/1.5095047.

S. Setiadji et al., “The increased use value of bamboo leaves as silica source for t-type zeolite synthesis,” MATEC Web Conf., vol. 197, pp. 1–4, 2018, doi: 10.1051/matecconf/201819705003.

I. Fatimah et al., “Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves,” Heliyon, vol. 5, no. 11, p. e02766, 2019, doi: 10.1016/j.heliyon.2019.e02766.

S. Kale, S. B. Umbarkar, M. K. Dongare, R. Eckelt, U. Armbruster, and A. Martin, “Selective formation of triacetin by glycerol acetylation using acidic ion-exchange resins as catalyst and toluene as an entrainer,” Appl. Catal. A Gen., vol. 490, pp. 10–16, 2015, doi: 10.1016/j.apcata.2014.10.059.

G. Padmasari and A. Melati, “Sintesis Karbon Aktif Tempurung Kelapa Dengan Aktivator HCl,” in Prosiding Seminar Nasional Fisika Festival, 2020, pp. 1–4.

M. N. Salman, D. Krisdiyanto, K. Khamidinal, and P. Arsanti, “Preparasi katalis silika sulfat dari abu sekam padi dan uji katalitik pada reaksi esterifikasi gliserol dengan anhidrida asam asetat,” Reaktor, vol. 15, no. 4, pp. 231–240, 2015, doi: 10.14710/reaktor.15.4.231-240.

B. Liu and F. Gao, “Navigating glycerol conversion roadmap and heterogeneous catalyst selection aided by density functional theory: a review,” Catalysts, vol. 8, no. 2. 2018. doi: 10.3390/catal8020044.

N. Ebadipour, S. Paul, B. Katryniok, and F. Dumeignil, “Alkaline-based catalysts for glycerol polymerization reaction: a review,” Catalysts, vol. 10, no. 9. 2020. doi: 10.3390/catal10091021.

S. Bhat, Y. J. Pagán-Torres, and E. Nikolla, “Strategies for designing the catalytic environment beyond the active site of heterogeneous supported metal catalysts,” Top. Catal., vol. 66, no. 15, pp. 1217–1243, 2023, doi: 10.1007/s11244-023-01835-2.

M. S. Khayoon, S. Triwahyono, B. H. Hameed, and A. A. Jalil, “Improved production of fuel oxygenates via glycerol acetylation with acetic acid,” Chem. Eng. J., vol. 243, pp. 473–484, 2014, doi: 10.1016/j.cej.2014.01.027.

X. Gao, S. Zhu, and Y. Li, “Graphene oxide as a facile solid acid catalyst for the production of bioadditives from glycerol esterification,” Catal. Commun., vol. 62, pp. 48–51, 2015, doi: 10.1016/j.catcom.2015.01.007.

N. Nuryoto, H. Sulistyo, and S. Rahayu, Suprihastuti Sri Sutijan, “Kinetika reaksi esterifikasi gliserol dengan asam asetat menggunakan katalisator Indion 225 Na,” J. Rekayasa Proses, vol. 5, no. 2, p. 35, 2011, doi: 10.22146/jrekpros.1897.

V. Palma, D. Barba, M. Cortese, M. Martino, S. Renda, and E. Meloni, “Microwaves and heterogeneous catalysis: a review on selected catalytic processes,” Catalysts, vol. 10, no. 2, 2020, doi: 10.3390/catal10020246.

A. A. Arpia, W. H. Chen, S. S. Lam, P. Rousset, and M. D. G. de Luna, “Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: a comprehensive review,” Chem. Eng. J., vol. 403, p. 126233, 2021, doi: 10.1016/j.cej.2020.126233.

T. Hong, J. Y. Yin, S. P. Nie, and M. Y. Xie, “Applications of infrared spectroscopy in polysaccharide structural analysis: progress, challenge and perspective,” Food Chem. X, vol. 12, no. October, p. 100168, 2021, doi: 10.1016/j.fochx.2021.100168.

M. O. Guerrero-Pérez and G. S. Patience, “Experimental methods in chemical engineering: Fourier transform infrared spectroscopy—FTIR,” Can. J. Chem. Eng., vol. 98, no. 1, pp. 25–33, 2020, doi: 10.1002/cjce.23664.

R. Pastres, A. L. Panzeri, D. Visentin, and V. Causin, “Determination by infrared spectroscopy of triacetin content in diesel: a tool for countering designer fuel frauds,” Talanta Open, vol. 5, no. March, p. 100109, 2022, doi: 10.1016/j.talo.2022.100109.

N. Tasuna, K. H. Hidayatillah, Marwan, and Zuhra, “Selective esterification of glycerol diacetin and triacetin over rice husk biosilica catalyst with microwave heating,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1087, no. 1, p. 012063, 2021, doi: 10.1088/1757-899x/1087/1/012063.


  • There are currently no refbacks.