Pengaruh Variasi Prekursor Terhadap Morfologi dan Aktivitas Antibakteri Nanopartikel Tembaga Menggunakan Reduktor Ekstrak Daun Gambir

Netri Elisma, Emriadi Emriadi, Ahmad Darmawi

Abstract

Research on synthesis copper nanoparticles has been carried out by the bioreduction method with a green synthesis approach using extracts of gambir leaves (Uncaria gambir Roxb). Gambir leaf extract contains polyphenol compounds uses as a natural reducing agent to reduce copper cation from variations of prekursor (CuSO45.H2O, Cu(NO3)2.3H2O and CuCl2.2H2O). The formation of copper nanoparticles (CuNP) colloid is visually shown by color change from light brown to dark brown. Absorption peak in UV-Vis spectrophotometer analysis at 405 -427 nm which is a specific wavelength of copper nanoparticles base on phenomenon of Surface Plasmon Resonance (SPR). The X-Ray Diffraction (XRD) analysis showed formation of CuNP with a face centered cubic (fcc) crystal structure. The result of Transmission Electron Microscope show the synthesized CuNP was spherical with particle size diameter 15nm for CuSO4 prekursor, 25 nm for Cu(NO3) prekursor and  28 nm for CuCl2 prekursor. The size of nanoparticles influenced of type prekursor anions. The antibacterial activity of the synthesized nanoparticles was also tested using pathogenic bacteria Escherichia coli and Staphylococcus aureus. The results showed that copper nanoparticles were promising antibacterial agents. Antibacterial activity test on copper nanoparticles were found to have higher antibacterial activity against Gram positive bacteria S. aureus than Gram negatif E. coli.

Keywords

Antibacterial, Copper, Gambir Extract, Nanoparticles, Precursor Anions

Full Text:

PDF

References

B. Gurung et al., “Optical Detection of the Viruses by Gold Nanoparticles (AuNPs),” J. Nanomater., vol. 2023, pp. 1–10, 2023, doi: 10.1155/2023/8091118.

I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, 2019, doi: 10.1016/j.arabjc.2017.05.011.

N. Elisma, A. Labanni, Emriadi, Y. Rilda, M. Asrofi, and S. Arief, “Green synthesis of copper nanoparticles using Uncaria gambir roxb. Leaf extract and its characterization,” Rasayan J. Chem., vol. 12, no. 4, pp. 1752–1756, 2019, doi: 10.31788/RJC.2019.1245347.

P. Szczyglewska, A. Feliczak-Guzik, and I. Nowak, “Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles,” Molecules, vol. 28, no. 13, 2023, doi: 10.3390/molecules28134932.

A. Antonio-Pérez, L. F. Durán-Armenta, M. G. Pérez-Loredo, and A. L. Torres-Huerta, “Biosynthesis of Copper Nanoparticles with Medicinal Plants Extracts: From Extraction Methods to Applications,” Micromachines, vol. 14, no. 10, pp. 1–32, 2023, doi: 10.3390/mi14101882.

S. C. Mali, A. Dhaka, C. K. Githala, and R. Trivedi, “Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties,” Biotechnol. Reports, vol. 27, 2020, doi: 10.1016/j.btre.2020.e00518.

S. Mahmoodi, A. Elmi, and S. Hallaj-nezhadi, “Molecular Pharmaceutics & Organic Process Research Copper Nanoparticles as Antibacterial Agents,” vol. 6, no. 1, pp. 1–7, 2018, doi: 10.4172/2329-9053.1000140.

S. Jadoun, S. Chinnam, and N. P. S. Chauhan, “Biosynthesis of nanoparticles using plant extract,” Nanotechnol. Herb. Med. Appl. Innov., pp. 101–117, 2023, doi: 10.1016/B978-0-323-99527-6.00006-9.

A. L. Apriliana, A. Kusnanda Nurisma, M. Ryan Maulana, and S. Fatimah Azzahra, “Potensi katekin daun gambir (Uncaria gambier roxb.) sebagai agen pembekuan darah pasca ekstraksi gigi,” J. Kedokt. Gigi Univ. Padjadjaran, vol. 34, no. 3, pp. 194–201, 2022, doi: 10.24198/jkg.v34i3.34457.

D. A. N. A. Antibakterinya, “Kandungan Fenolik Ekstrak Daun Gambir (Uncaria gambir Roxb) dan Aktivitas Antibakterinya,” agriTECH, vol. 27, no. 2, pp. 89–94, 2014, doi: 10.22146/agritech.9498.

I. Processed, W. Traditional, T. Anggraini, and A. Asben, “Uncaria gambir Roxb . mediated synthesis of stable silver nanoparticles in the presence of triethanolamine as the capping agent Uncaria gambir Roxb . mediated synthesis of stable silver nanoparticles in the presence of triethanolamine as the capping agent,” 2023, doi: 10.1088/1755-1315/1201/1/012085.

S. Arief, F. W. Nasution, Zulhadjri, and A. Labanni, “High antibacterial properties of green synthesized gold nanoparticles using Uncaria gambir Roxb. leaf extract and triethanolamine,” J. Appl. Pharm. Sci., vol. 10, no. 8, pp. 124–130, 2020, doi: 10.7324/JAPS.2020.10814.

H. Qamar, S. Rehman, D. K. Chauhan, A. K. Tiwari, and V. Upmanyu, “Green Synthesis , Characterization and Antimicrobial Activity of Copper Oxide Nanomaterial Derived from Momordica charantia,” pp. 2541–2553, 2020.

M. L. Ermini and V. Voliani, “Antimicrobial Nano-Agents : The Copper Age,” 2021, doi: 10.1021/acsnano.0c10756.

N. B. Lantican et al., “Journal of Science : Advanced Materials and Devices Effects of reaction temperatures and reactant concentrations on the antimicrobial characteristics of copper precipitates synthesized using L-ascorbic acid as reducing agent,” vol. 4, pp. 66–71, 2019, doi: 10.1016/j.jsamd.2018.12.009.

N. V. Sari, E. B. Susatyo, and F. W. Mahatmanti, “Pengaruh pH terhadap Adsorpsi Ion Cu2+ oleh Polifenol Kluwak (Pangium edule R.) dengan Pembentukan Kompleks,” Indones. J. Chem. Sci., vol. 7, no. 3, pp. 221–227, 2018.

F. V. Kurniawan, A. H. Cahyana, F. V. Kurniawan, A. H. Cahyana, and R. T. Yunarti, “Synthesis of Copper ( II ) Oxide Nanoparticles using Vitis vinifera L . Leaf Ex-tract and its Application as a Catalyst in Doebner Reaction Synthesis of Copper ( II ) Oxide Nanoparticles using Vitis vinifera L . Leaf Extract and its Application as a Catal,” vol. 27, no. 3, 2023, doi: 10.7454/mss.v27i3.1442.

M. K. Ghosh, S. Sahu, I. Gupta, and T. K. Ghorai, “Green synthesis of copper nanoparticles from an extract ofJatropha curcasleaves: characterization, optical properties, CT-DNA binding and photocatalytic activity,” RSC Adv., vol. 10, no. 37, pp. 22027–22035, Jun. 2020, doi: 10.1039/d0ra03186k.

N. S. Sanjini, B. Winston, and S. Velmathi, “Effect of prekursors on the synthesis of CuO nanoparticles under microwave for photocatalytic activity towards methylene blue and rhodamine B dyes,” J. Nanosci. Nanotechnol., vol. 17, no. 1, pp. 495–501, 2017, doi: 10.1166/jnn.2017.11785.

T. Ahmad, “Ascorbic acid assisted synthesis, characterization and catalytic application of copper nanoparticles,” Mater. Sci. Eng. Int. J., vol. 2, no. 4, 2018, doi: 10.15406/mseij.2018.02.00040.

M. A. Thakar, S. Saurabh Jha, K. Phasinam, R. Manne, Y. Qureshi, and V. V. Hari Babu, “X ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissus vitiginea,” Mater. Today Proc., vol. 51, no. xxxx, pp. 319–324, 2021, doi: 10.1016/j.matpr.2021.05.410.

V. Ranga Rao Pulimi and P. Jeevanandam, “The effect of anion on the magnetic properties of nanocrystalline NiO synthesized by homogeneous precipitation,” J. Magn. Magn. Mater., vol. 321, no. 17, pp. 2556–2562, 2009, doi: 10.1016/j.jmmm.2009.03.039.

G. Sánchez-Sanhueza, D. Fuentes-Rodríguez, and H. Bello-Toledo, “Copper Nanoparticles as Potential Antimicrobial Agent in Disinfecting Root Canals: A Systematic Review,” Int. J. Odontostomatol., vol. 10, no. 3, pp. 547–554, Dec. 2016, doi: 10.4067/s0718-381x2016000300024.

M. Aliyu, A. Umar, and A. Umar Birnin-Yauri, “Green synthesis of copper nanoparticles using Musa acuminata aqueous extract and their antibacterial activity,” Smujo.Id, vol. 20, no. 1, pp. 10–16, 2023, doi: 10.13057/biotek/c200102.

X. Ma, S. Zhou, X. Xu, and Q. Du, “Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review,” Front. Surg., vol. 9, no. August, 2022, doi: 10.3389/fsurg.2022.905892.

S. Adewale Akintelu, A. Kolawole Oyebamiji, S. Charles Olugbeko, and D. Felix Latona, “Green chemistry approach towards the synthesis of copper nanoparticles and its potential applications as therapeutic agents and environmental control,” Curr. Res. Green Sustain. Chem., vol. 4, no. September, pp. 1–13, 2021, doi: 10.1016/j.crgsc.2021.100176.

Refbacks

  • There are currently no refbacks.