Studi Kinetika dan Penentuan Dosis Optimum Koagulan FeCl3 dalam Menurunkan Konsentrasi Cu2+ pada Larutan

Muhammad Seachan Fadila, Moh. Azhar Afandy, Suhirman Suhirman, Muhammad Iqbal Al Fuady


This study aims to determine the efficiency and adsorption capacity of various concentrations of FeCl3 coagulants (100-300 mg/L) to reduce Cu2+ concentrations in wastewater as well as the kinetic parameters that affect the adsorption mechanism in the coagulation process when coagulant particles added to wastewater will stick to the surface of colloidal particles, which will then change the charge. Several adsorption kinetics models employed in this study include Pseudo-first order, Pseudo-second order, Elovich, and Intra-particle diffusion. The applicability of the models produced in this work was evaluated by optimizing the non-linear equations, which provide values that are more precise and in agreement with real situations when compared to the linear kinetic models. These characteristics are measured based on the value of the coefficient of correlation (R2), Sum Square Error (SSE), and Chi-Square (x2). The results showed that the highest efficiency value of the FeCl3 coagulant was 98.705%, with the value of the adsorption capacity increasing along with the concentration of the FeCl3 coagulant. The kinetic model created in this work has a very excellent fit in terms of experimental data values and prediction data.


Coagulation, FeCl3 Concentration, Kinetics Study

Full Text:



M. B. Bahrodin, N. S. Zaidi, N. Hussein, M. Sillanpää, D. D. Prasetyo, dan A. Syafiuddin, “Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant,” Curr. Pollut. Reports, vol. 7, no. 3, hal. 379–391, 2021, doi: 10.1007/s40726-021-00191-7.

H. Sukmana, N. Bellahsen, F. Pantoja, dan C. Hodur, “Adsorption and coagulation in wastewater treatment - Review,” Prog. Agric. Eng. Sci., vol. 17, no. 1, hal. 49–68, 2021, doi: 10.1556/446.2021.00029.

H. Cui, X. Huang, Z. Yu, P. Chen, dan X. Cao, “Application progress of enhanced coagulation in water treatment,” RSC Adv., vol. 10, no. 34, hal. 20231–20244, 2020, doi: 10.1039/d0ra02979c.

S. S. Kumar dan N. R. Bishnoi, “Coagulation of landfill leachate by FeCl3: process optimization using Box–Behnken design (RSM),” Appl. Water Sci., vol. 7, no. 4, hal. 1943–1953, 2017, doi: 10.1007/s13201-015-0372-1.

A. Pohl, “Removal of Heavy Metal Ions from Water and Wastewaters by Sulfur-Containing Precipitation Agents,” Water. Air. Soil Pollut., vol. 231, no. 10, 2020, doi: 10.1007/s11270-020-04863-w.

J. Patoczka, R. K. Johnson, dan J. J. Scheri, “Presented at Water Environment Federation Industrial Wastes Technical Conference, Nashville, TN, 1998,” Present. Water Environ. Fed. Ind. Wastes Tech. Conf., vol. i, 1998.

P. D. Johnson, P. Girinathannair, K. N. Ohlinger, S. Ritchie, L. Teuber, dan J. Kirby, “Enhanced Removal of Heavy Metals in Primary Treatment Using Coagulation and Flocculation,” Water Environ. Res., vol. 80, no. 5, hal. 472–479, 2008, doi: 10.2175/106143007x221490.

I. Syaichurrozi, “Studi Kinetik Proses Koagulasi dengan Koagulan Poly Aluminium Chloride dan Tawas dalam Pengolahan Limbah Cair Industri Tempe,” Eksergi, vol. 18, no. 2, hal. 43, 2021, doi: 10.31315/e.v0i0.5362.

B. Haryanto, W. K Sinaga, dan F. T Saragih, “Kajian Model Interaksi pada Adsorpsi Logam Berat Kadmium (Cd2+) dengan Menggunakan Adsorben dari Pasir Hitam,” J. Tek. Kim. USU, vol. 8, no. 2, hal. 79–84, 2019, doi: 10.32734/jtk.v8i2.2032.

L. Maslukah, M. Zainuri, A. Wirasatriya, dan R. Widiaratih, “Studi Kinetika Adsorpsi Dan Desorpsi Ion Fosfat (Po42-) Di Sedimen Perairan Semarang Dan Jepara,” J. Ilmu dan Teknol. Kelaut. Trop., vol. 12, no. 2, hal. 385–396, 2020, doi: 10.29244/jitkt.v12i2.32392.

H. Kristianto, N. Manurung, I. K. Wardhani, S. Prasetyo, A. K. Sugih, dan A. A. Arbita, “A kinetic, isotherm adsorption, and thermodynamic study of Congo red coagulation using Leucaena crude extract as natural coagulant,” Water Pract. Technol., vol. 17, no. 6, hal. 1332–1346, 2022, doi: 10.2166/wpt.2022.058.

M. S. Hossain, F. Omar, A. J. Asis, R. T. Bachmann, M. Z. Islam Sarker, dan M. O. Ab Kadir, “Effective treatment of palm oil mill effluent using FeSO 4 .7H 2 O waste from titanium oxide industry: Coagulation adsorption isotherm and kinetics studies,” J. Clean. Prod., vol. 219, hal. 86–98, 2019, doi: 10.1016/j.jclepro.2019.02.069.

S. Vishali dan R. Karthikeyan, “Application of green coagulants on paint industry effluent – a coagulatioflocculation kinetic study,” Desalin. Water Treat., vol. 122, hal. 112–123, 2018, doi: 10.5004/dwt.2018.22703.

M. Menkiti, I. Ezemagu, dan S. Singaraju, “Focus on adsorptive equilibrium, kinetics and thermodynamic components of petroleum produced water biocoagulation using novel Tympanotonos Fuscatus extract,” Petroleum, vol. 4, no. 1, hal. 56–64, 2018, doi: 10.1016/j.petlm.2017.09.005.

S. Hussain et al., “Removal of organic contaminants from river and reservoir waters by three different aluminum-based metal salts: Coagulation adsorption and kinetics studies,” Chem. Eng. J., vol. 225, hal. 394–405, 2013, doi: 10.1016/j.cej.2013.03.119.

J. R. Witono, A. M, A. Y, dan C. C, “Sistem Integrasi Koagulasi dan Adsorpsi dalam Reduksi Logam Berat (Cr6+ dan Cu2+) pada Limbah Cair Industri Tekstil,” Semin. Nas. Tek. Kim. Kejuangan, vol. 0, no. 0, hal. 7-1-I7.7, 2015, [Daring]. Tersedia pada:

J. López-Luna et al., “Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles,” SN Appl. Sci., vol. 1, no. 8, hal. 1–19, 2019, doi: 10.1007/s42452-019-0977-3.

M. Puspitasari dan W. Hadi, “Efektifitas Al2(SO4)3 dan FeCl3 Dalam Pengolahan Air Menggunakan Gravel Bed Flocculator Ditinjau Dari Parameter Kekeruhan dan Total Coli,” J. Tek. Pomits, vol. 3, no. 2, hal. 163–166, 2014.

S. F. Ramli dan H. Abdul Aziz, “Use of Ferric Chloride and Chitosan as Coagulant to Remove Turbidity and Color from Landfill Leachate,” Appl. Mech. Mater., vol. 773–774, hal. 1163–1167, 2015, doi: 10.4028/

H. Alwi, J. Idris, M. Musa, dan K. H. Ku Hamid, “A preliminary study of banana stem juice as a plant-based coagulant for treatment of spent coolant wastewater,” J. Chem., vol. 2013, 2013, doi: 10.1155/2013/165057.

S. Maurya dan A. Daverey, “Evaluation of plant-based natural coagulants for municipal wastewater treatment,” 3 Biotech, vol. 8, no. 1, hal. 1–4, 2018, doi: 10.1007/s13205-018-1103-8.

A. Nur, R. Anugrah, dan Z. Farnas, “Efektivitas Dan Efisiensi Koagulan Poly Aluminium Chloride ( PAC ) Terhadap Performance IPA KTK PDAM Solok,” Semin. Nas. Sains dan Teknol. Lingkung. II, hal. 128–131, 2016.

A. Chamdan dan A. Purnomo, “Kajian Kinerja Teknis Proses dan Operasi Unit Koagulasi-Flokulasi-Sedimentasi pada Instalasi Pengolahan Air (IPA) Kedunguling PDAM Sidoarjo,” J. Tek. POMITS, vol. 2, no. 2, hal. 1–6, 2013.

W. zheng Yu, J. Gregory, L. Campos, dan G. Li, “The role of mixing conditions on floc growth, breakage and re-growth,” Chem. Eng. J., vol. 171, no. 2, hal. 425–430, 2011, doi: 10.1016/j.cej.2011.03.098.

R. M. El-taweel et al., “A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN,” Curr. Res. Green Sustain. Chem., vol. 6, no. February, hal. 100358, 2023, doi: 10.1016/j.crgsc.2023.100358.

J. Duan dan J. Gregory, “Coagulation by hydrolysing metal salts,” Adv. Colloid Interface Sci., vol. 100–102, no. SUPPL., hal. 475–502, 2003, doi: 10.1016/S0001-8686(02)00067-2.

I. Nurhayati, S. Sugito, dan A. Pertiwi, “Pengolahan Limbah Cair Laboratorium dengan Adsorpsi dan Pretreatment Netralisasi dan Koagulasi,” J. Sains &Teknologi Lingkung., vol. 10, no. 2, hal. 125–138, 2018, doi: 10.20885/jstl.vol10.iss2.art5.

A. Ramadhani, Muhdarina, dan A. Linggawati, “Kapasitas Adsorpsi Metilen Biru Oleh Lempung Cengar Teraktivasi Asam Sulfat,” Jom Fmipa, vol. 2, no. 1, hal. 232–238, 2015.

A. B. Pangeran, M. A. Afandy, dan F. D. I. Sawali, “Efficiency of FeSO4.7H2O as a Coagulant on Chromium Hexavalent Removal Using Coagulation-Flocculation Process : Optimization Using Response Surface Methodology,” J. Tek. Kim. dan Lingkung., vol. 7, no. 2, hal. 123–133, 2023.

J. C. Bullen, S. Saleesongsom, K. Gallagher, dan D. J. Weiss, “A Revised Pseudo-Second-Order Kinetic Model for Adsorption, Sensitive to Changes in Adsorbate and Adsorbent Concentrations,” Langmuir, vol. 37, no. 10, hal. 3189–3201, 2021, doi: 10.1021/acs.langmuir.1c00142.

E. E. Jasper, V. O. Ajibola, dan J. C. Onwuka, “Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon,” Appl. Water Sci., vol. 10, no. 6, hal. 1–11, 2020, doi: 10.1007/s13201-020-01218-y.

W. Ying, “Pseudo-First and Second-Order Models for P Adsorption onto Termite Mound Soil (TMS),” IOSR J. Appl. Chem. (IOSR-JAC, vol. 12, no. 2, hal. 11–16, 2019, doi: 10.9790/5736-1202011116.

G. William Kajjumba, S. Emik, A. Öngen, H. Kurtulus Özcan, dan S. Aydın, “Modelling of Adsorption Kinetic Processes—Errors, Theory and Application,” Adv. Sorption Process Appl., hal. 1–19, 2019, doi: 10.5772/intechopen.80495.

S. Ersali, V. Hadadi, O. Moradi, dan A. Fakhri, “Pseudo-second-order kinetic equations for modeling adsorption systems for removal of ammonium ions using multi-walled carbon nanotube,” Fullerenes, Nanotub. Carbon Nanostructures, hal. 150527104639002, 2013, doi: 10.1080/1536383x.2013.787610.

H. N. Tran, “Applying Linear Forms of Pseudo-Second-Order Kinetic Model for Feasibly Identifying Errors in the Initial Periods of Time-Dependent Adsorption Datasets,” Water (Switzerland), vol. 15, no. 6, 2023, doi: 10.3390/w15061231.

M. A. Hubbe, S. Azizian, dan S. Douven, “Implications of Apparent Pseudo-Second-Order Adsorption Kinetics onto Cellulosic Materials: A Review,” BioResources, vol. 14, no. 3, hal. 7582–7626, 2019.

F. C. Wu, R. L. Tseng, dan R. S. Juang, “Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems,” Chem. Eng. J., vol. 150, no. 2–3, hal. 366–373, 2009, doi: 10.1016/j.cej.2009.01.014.

M. Pan, X. Lin, J. Xie, dan X. Huang, “Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites,” RSC Adv., vol. 7, no. 8, hal. 4492–4500, 2017, doi: 10.1039/C6RA26802A.

J. J. Enriquez-Flores, C. I. Gervacio-Arciniega, F. J. Flores-Ruiz, D. Cardona, E. Camps, J. Muñoz-Saldaña, dan F. J. Espinoza-Beltrán, “Piezoresponse Force Microscopy Studies of pc-BiFeO3 Thin Films Produced by the Simultaneous Laser Ablation of Bi and FeO3,” Mater. Res. Soc. Symp. Proc., vol. 1477, no. 1, hal. 61–66, 2012, doi: 10.1557/opl.2012.


  • There are currently no refbacks.