

Available online at: http://reactor.poltekatipdg.ac.id/ REACTOR Journal of Research on Chemistry and Engineering

Pengaruh Doping Ca dan K pada γ-Al₂O₃ terhadap Sifat Fisik Katalis pada Transesterifikasi Minyak Kelapa

Eko Supriadi¹, Danawati Hadi Prajitno², Mahfud², Ngatijo³, Rahmat Basuki⁴

¹ Jurusan Teknik Kimia Bahan Nabati, Politeknik ATI Padang, Jl. Bungo Pasang Tabing, Padang, 25171, Indonesia

² Departemen Teknik Kimia, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Sukolilo, Surabaya, 60111, Indonesia

³ Prodi Kimia, Fakultas Sains dan Teknologi, Universitas Jambi, Jl. Jambi-Ma Bulian Km. 15, Jambi, 36361, Indonesia

⁴ Prodi Kimia, Universitas Pertahanan RI, Kawasan IPSC Sentul, Bogor, 16810, Indonesia

ARTICLE INFORMATION

Received: June 09, 2021 Revised: June 28, 2021 Available online: June 29, 2021

KEYWORDS

Alumina, Catalyst, Metal Doping, Transesterification

CORRESPONDENCE

Name: Eko Supriadi E-mail: ekosupriadi@poltekatipdg.ac.id

ABSTRACT

Metal doping plays important role in increasing catalytic activity of catalyst materials. In this work, Ca and K were doped to the y-Al₂O₃ by dry impregnation method to study the crystallinity, surface area, activation energy, and yield in the coconut oil transesterification reaction. The success of doping was shown in the characterization of Ca/γ-Al₂O₃ and K/γ-Al₂O₃ using X-Ray Diffraction (XRD) which increasing in crystallinity from 62.2% (γ -Al₂O₃) to 69.3 (K/ γ -Al₂O₃) and 76.0 (Ca/ γ -Al₂O₃). The emerging peak of 2 θ characteristics of K (29.70° and 32.65°) and Ca (25.35°, 26.77°, and 27.17°) on the γ -Al₂O₃ (37.66°, 45.82° and 67.22°) was also observed. Characterization by the Surface Area Analyzer (SAA) shows that the K/y-Al₂O₃ catalyst has a smaller surface area (34.03 m²/g) than Ca/γ-Al₂O₃ (83.77 m²/g), but a higher pore diameter (66.12 Å) than Ca/ γ -Al₂O₃ (35.22 Å). The K/ γ -Al₂O₃ catalyst produced greater FAME yield (93.19%) than Ca/ γ -Al₂O₃ (29.76%) at a catalyst concentration of 2.5%, reaction time 150 s, and ultrasonic frequency of 40 kHz. The quality of the FAME catalyzed by K/y-Al₂O₃ fulfills four test parameters: density, kinematic viscosity, flash point, and pour point according to SNI 04-7182-2006 standards.

PENDAHULUAN

Energi merupakan salah satu penggerak utama ekonomi suatu negara, namun peningkatan populasi dan revolusi industri mendorong pada terjadinya krisis energi [1]. Keadaan ini menyebabkan pemafaatan yang lebih luas terhadap energi terbarukan seperti sinar matahari, angin, panas bumi, pasang-surut ombak, dan biodisel [2]. Diantara sumber energi tersebut, biodisel dapat diperoleh dari mikroalga dan berbagai minyak nabati. Minyak hasil transesterifikasi yang berupa FAME (*Fatty Acid Methyl Ester*), atau sering disebut biodisel, sangat berpotensi menjadi alternatif yang baik untuk bahan bakar pengganti minyak bumi [3].

Secara umum FAME dianggap sebagai bahan bakar teroksigenisasi, terbarukan, ramah lingkungan dengan sifat fisik yang mirip dengan BBM namun memiliki profil emisi yang lebih rendah [4]. Biodisel dapat diproduksi melalui reaksi transesterifikasi antara

bersifat korosif, dan bersifat korosif, dan membahayakan lingku ah lingkungan dengan juga kurang disukai kar

minyak dan alkohol dengan bantuan katalis homogen, heterogen, atau enzimatik dengan hasil samping gliserol. Banyak alkohol dapat digunakan dalam reaksi transesterifikasi, namun merupakan alkohol yang paling sering digunakan karena murah, mudah didapatkan, dan menghasilkan yield yang tinggi [5]. Skema reaksi transesterifikasi suatu trigliserida ditunjukkan oleh Gambar 1.

Terdapat tiga jenis katalis utama yang digunakan dalam produksi biodisel, yaitu katalis asam, katalis basa, dan enzim [6]. Baik katalis asam maupun katalis basa dapat berupa homogen atau heterogen. Katalis homogen seperti NaOH, KOH, atau metoksidanya, HCl, dan H₂SO₄ kurang disukai karena pemisahannya sukar, bersifat korosif, dan menghasilkan limbah yang membahayakan lingkungan [7]. Enzim secara umum juga kurang disukai karena biaya yang tinggi, laju reaksi yang rendah, dan masalah pada deaktivasi enzim [8]. Katalis basa heterogen merupakan katalis yang paling disukai karena efektif, pemisahannya mudah, dan menghasilkan yield FAME yang tinggi.

Gambar 1. Reaksi transesterifikasi trigliserida dengan

Beberapa katalis basa heterogen alami banyak dilaporkan dalam pembuatan biodisel, diantaranya adalah zeolit [2][9], montmorilonit [10], TiO₂ [11], dan alumina [3][12]. Selain memiliki situs basa Bronsted (ion oksigen, O^{2-}), katalis heterogen alami tersebut juga memiliki situs asam Lewis yaitu pada ion logam positif. Baik situs asam dan basa tersebut digunakan dalam pemutusan ikatan O-H pada untuk membentuk metoksida (CH₃O⁻) dan proton (H⁺). Selanjutnya ion metoksida bereaksi dengan trigliserida membentuk biodisel [13].

Dalam rangka meningkatkan aktivitas katalitik untuk meningkatkan yield dari katalis heterogen umumnya dilakukan dengan cara mendoping suatu logam pada katalis heterogen tersebut [14]. Namun, masih terbatas publikasi yang melaporkan pengaruh jenis doping logam terhadap kristalinitas, luas permukaan, energi aktivasi, dan yield dari suatu reaksi transesterifikasi. Dalam penelitian ini, kalsium dan kalium digunakan sebagai doping pada katalis heterogen alami γ -Al₂O₃ untuk mempelajari pengaruh jenis doping logam terhadap kristalinitas, luas permukaan, energi aktivasi, dan yield pada reaksi transesterifikasi minyak kelapa menjadi FAME. Lebih jauh, perbandingan kualitas FAME yang dihasilkan berdasarkan metode uji ASTM juga dibahas dalam artikel ini.

METODOLOGI

Bahan

Bahan yang digunakan dalam penelitian ini adalah minyak kelapa (Barco) sebagai bahan baku FAME, metanol 99% (*Brataco Chem*), dan bahan dasar katalis (KOH, CaO, dan γ -Al₂O₃) berkualitas *pure absolute* (p.a) dari *Brataco Chem*.

Preparasi Katalis Heterogen

Katalis K/ γ -Al₂O₃ dan Ca/ γ -Al₂O₃ disintesis melalui *dry impregnation method* masing-masing berdasarkan Noiroj dkk. (2009) [15] dan Pasupulety dkk. (2013) [16]. Preparasi K/ γ -Al₂O₃ diawali dengan pelarutan KOH dengan konsentrasi berat sebesar 20% mol terhadap γ -Al₂O₃ dalam 100 ml aquades dan diaduk selama 30 menit. Dengan cara yang sama, CaO dengan konsentrasi sebesar 25% terhadap γ -Al₂O₃ dilarutkan dalam campuran 100 mL akuades dan 5,72 mL asam asetat dan diaduk selama 30 menit. Kedalam masingmasing larutan tersebut ditambahkan 10 gram γ -Al₂O₃ dan diaduk dengan kecepatan 200 rpm selama 3 jam. Endapan yang terbentuk disaring dan dipanaskan pada 120 °C selama 12 jam untuk menguapkan air. Padatan kering dikalsinasi pada suhu 550 °C dengan atmosfer nitrogen dan hidrogen selama masing-masing 2 jam.

Karakterisasi Katalis

Karakterisasi kristalinitas dan luas permukaan katalis hasil sintesis dilakukan masing-masing dengan X-Ray Diffraction (XRD, Bruker D2 Phaser) dan Surface Area Analyzer (SAA, Quantachrome Novatouch Lx4). Kandungan FAME dalam biodisel hasil reaksi transesterifikasi diukur menggunakan Gas Chromatography Mass Spec (GC-MS, Thermo _ **Scientific** ISOLT Single Quadropole Mass Spektrometer). Peralatan pendukung yang digunakan dalam pengujian kualitas FAME diantaranya adalah glassware, oven, centrifugator, dan piknometer.

Reaksi Transesterfikasi Minyak Kelapa

Gambar 2. Skema reaktor transesterifikasi minyak kelapa

Campuran metanol, minyak kelapa (rasio minyak kelapa: metanol = 1 : 9), dan katalis (2,5% berat) dipanaskan dalam *ultrasonic cleaning bath* (KRISBOW KW1801033, kondisi operasi: 20-40 kHz, daya 100 W, kapasitas 2,8 liter, dan voltase 240V/50Hz) dengan waktu (0,5; 1,0; 1,5; 2,0; dan 2,5 menit) dan frekuensi (40 kHz) yang ditentukan (selama proses pemanasan suhu operasi diamati dan dicatat). Skema reaktor ditampilkan pada Gambar 2. Pemanasan kemudian dihentikan dan hasil disentrifugasi selama 1 jam pada 5000 rpm. Filtrat kemudian dipisahkan sebagai FAME dan padatan merupakan gliserol. FAME yang terbentuk

dipanaskan pada 110 °C selama 1 jam dan kemudian dianalisis.

Analisis kualitas FAME yang dihasilkan dilakukan melalui parameter uji densitas (Persamaan 1), viskositas (Persamaan 2), uji yield metill ester (Persamaan 3), dan uji flash point.

$$Densitas = \frac{(P+S)-(P)}{V_P}$$
(1)

 $Viskositas = t \times Faktor Koreksi$ (2)

$$Yield = \frac{Berat Produk \times \% Kemurnian}{Berat Minyak Kelapa}$$
(3)

Keterangan: P = massa piknometer kosong, S = massa sampel, V_P = volume piknometer, dan t = waktu pengukuran.

HASIL DAN PEMBAHASAN

Analisis Kristalinitas

Tabel 1. Analisis kristalinitas dan puncak 20 khas K/ $\!\gamma$

Al ₂ O ₃ , Ca/γ-Al ₂ O ₃ , dan γ-Al ₂ O ₃			
Material	Puncak 20 Khas (°)	Kristalinitas (%)	
γ -Al ₂ O ₃	37,7; 45,8; dan 67,2	62,2	
K/γ-Al ₂ O ₃	37,7; 45,8; 67,2;	60.2	
	29,7; dan 32,7	09,5	
Ca/γ - Al_2O_3	37,7; 45,8; 67,2;	76.0	
	25,4; 26,8; dan 27,2	70,0	

Gambar 3. Puncak 20 khas dari K/ γ -Al₂O₃, Ca/ γ -Al₂O₃, dan γ -Al₂O₃

Analisis kristalinitas katalis K/ γ -Al₂O₃, Ca/ γ -Al₂O₃, dan γ -Al₂O₃ diperoleh dari pola XRD material tersebut (Gambar 3). Puncak 2 θ khas untuk masing-masing material ditunjukkan oleh Tabel 1. Puncak 2 θ γ -Al₂O₃ (37,7°, 45,8° dan 67,2°) masing-masing mewakili bidang (311), (200), dan (220) [17] dan sesuai dengan 20 referensi kartu JCPDS Nomor 01-080-0955 dan 01-075-0921 [18]. Keberhasilan doping K dan Ca ditunjukkan oleh munculnya puncak 20 baru masingmasing pada 29,7° dan 32,7° [19], [20] dan 25,4°; 26,8°; dan 27,2° [21], [22]. Doping K dan Ca pada γ -Al₂O₃ juga terbukti meningkatkan kristalinitas katalis.

Analisis Luas Permukaan

Katalis γ -Al₂O₃ hasil industri *hydrotreating* merupakan tipe alumina yang menarik karena memiliki luas permukaan yang besar (120-190 m²) [23] dan mampu meregenerasi aktivitas katalitik setelah pemakaian yang intensif pada kondisi operasi yang ekstrim [6]. Namun, beberapa penelitian melaporkan bahwa doping logam terhadap γ -Al₂O₃ menyebabkan luas permukaanya menurun. Menurunnya luas permukaan γ -Al₂O₃ terdoping logam dimungkinkan kerena adanya permukaan γ -Al₂O₃ yang tertutupi oleh logam [6], [24].

Analisis luas permukaan, diameter pori, dan volume pori katalis K/ γ -Al₂O₃ dan Ca/ γ -Al₂O₃ ditampilkan pada Tabel 2. Terlihat luas permukaan γ -Al₂O₃ terdoping K dan Ca pada penelitian ini lebih kecil bila dibandingkan dengan luas permukaan dari γ -Al₂O₃ referensi. Penurunan luas permukaan ini merupakan akibat dari loading Ca dan K pada pori support γ -Al₂O₃ [25]. Luas permukaan katalis Ca/ γ -Al₂O₃ lebih besar daripada katalis K/ γ -Al₂O₃, namun memiliki diameter pori yang lebih kecil dibanding katalis K/ γ -Al₂O₃ yang diduga karena jari-jari ion Ca²⁺ (1,00 Å) lebih kecil dari jari-jari ion K⁺ (1,49 Å) [26] sehingga lebih sedikit Ca²⁺ yang masuk ke dalam pori-pori γ -Al₂O₃ lebih besar.

Tabel 2. Karakteristik katalis hasil analisa SAA

Jenis Katalis	Luas	Diameter	Volume
	Permukaan	pori	pori
	(m^2/g)	(Å)	(cm ³ /g)
K/γ-Al ₂ O ₃	34,0	66,1	0,11
Ca/γ-Al ₂ O ₃	83,8	35,2	0,15

Analisis Kinetika Reaksi dan Energi Aktivasi

Secara teoritis reaksi transesterifikasi adalah reaksi *reversible* dengan mekanisme yang kompleks. Perhitungan tetapan laju reaksi trans-esterifikasi (*k*) dilakukan menggunakan permodelan yang secara singkat diwakili oleh Persamaan (4) [16], [27].

$$-\ln(1-\eta) = kt \tag{4}$$

Dimana *k* adalah konstanta laju reaksi orde satu semu (menit⁻¹) yang diperoleh dari *slope* pada *plot* garis –ln $(1-\eta)$ lawan *t*. Simbol η adalah konversi minyak kelapa (trigliserida) dan *t* adalah waktu reaksi (menit). Hasil *plot* dari Pers. (4) ditunjukkan oleh Gambar 4.

Perhitungan energi aktivasi (E_a) reaksi diperoleh dari persamaan:

$$\ln k = -\frac{E_a}{RT} \tag{4}$$

dimana R merupakan tetapan gas ideal (8,314 J/mol K) dan T merupakan suhu mutlak (K). Hasil perhitungan menunjukkan bahwa K/ γ -Al₂O₃ memiliki E_a yang lebih kecil dari Ca/ γ -Al₂O₃ (Tabel 3) yang mengindikasikan bahwa aktivitas katalitik K/ γ -Al₂O₃ lebih tinggi dibanding Ca/ γ -Al₂O₃.

Gambar 4. *Plot* garis $-\ln (1-\eta)$ lawan *t* (waktu) pada reaksi transesterifikasi minyak kelapa terkatalisis K/ γ -Al₂O₃ dan Ca/ γ -Al₂O₃ dengan bantuan 40 kHz gelombang ultrasonik

\mathbf{T} and \mathbf{T} . In an anticipating number of the numbe	Tabel 3.	Karakteristik	katalis l	hasil	analisa SAA
--	----------	---------------	-----------	-------	-------------

Katalis	k (menit ⁻¹)	Suhu (°C)	Ea (kJ/mol)
K/γ-Al ₂ O ₃	0,0582	58	7,83
Ca/y-Al ₂ O ₃	0,0023	58	16,72
Ca/γ -Al ₂ O ₃	0,0025	58	10,72

Analisis Yield

Peningkatan yield produk FAME yang dikatalisis oleh K/γ -Al₂O₃ 2,5% meningkat tajam pada waktu 0-30 detik, kemudian melandai hingga waktu 150 detik dan

mencapai yield 93,76% (Gambar 5). Pola yang sedikit berbeda ditunjukkan oleh reaksi yang dikatalisis oleh Ca/ γ -Al₂O₃ 2,5% dimana yield produk FAME terus meningkat secara linear dari 0-150 detik dan diperoleh yield 29,76%. Rendahnya yield produk FAME untuk reaksi terkatalisis Ca/ γ -Al₂O₃ dimungkinkan karena aktivitas katalisik Ca yang lebih rendah dari K, sehingga *loading* CaO terhadap γ -Al₂O₃ harus >5% dengan rasio molar metanol:minyak kelapa > 9:1 yaitu 15:1 hingga 18:1 [28]. Beberapa faktor yang dapat diidentifikasi mengapa yield produk FAME tidak mencapai 100% diantaranya adalah sifat reaksi bolak-balik dan hasil samping [7], [29].

Gambar 5. Profil yield dan densitas produk FAME pada reaksi terkatalisis K/γ-Al₂O₃ dan Ca/γ-Al₂O₃ sebagai fungsi waktu

Densitas FAME dengan katalis K/γ -Al₂O₃ 2,5% terlihat mengalami penurunan yang signifikan dibanding dengan katalis Ca/ γ -Al₂O₃ 2,5% (Gambar 5). Adapun karakteristik kualitas produk FAME hasil dari proses transesterifikasi dapat dilihat pada Tabel 3. karakteristik FAME yang dihasilkan memenuhi standar mutu FAME Indonesia dengan menggunakan katalis K/ γ -Al₂O₃. Sedangkan untuk katalis Ca/ γ -Al₂O₃ karakteristik produk yang dihasilkan belum memenuhi standar mutu FAME Indonesia.

Tabel 3. Perbandingan karakteristik kualitas FAME menggunakan katalis K/γ-Al₂O₃ dan Ca/γ-Al₂O₃

Parameter Pengujian	Metode Uji	K/γ-Al ₂ O ₃	Ca/y-Al ₂ O ₃	SNI 04-7182-2006
Densitas (g/cm ³)	ASTM D 4052	0,8868	>0,890	0,85 - 0,89
Viscositas Kinematik (cSt)	ASTM D 445	4,010	> 6,0	2,3-6,0
Titik Nyala (°C)	ASTM D 93	112	-	Min 100
Titik Tuang (°C)	ASTM D 97	-3	-	Min 18

KESIMPULAN

Doping logam K dan Ca pada katalis γ -Al₂O₃ telah berhasil dilakukan dengan metode *dry impregnation*. Keberhasilan doping ditunjukkan oleh kenaikan kristalinitas γ -Al₂O₃ pasca doping dan munculnya puncak 20 khas untuk logam K dan Ca (analisis XRD). Doping K dan Ca juga terbukti menurunkan luas permukaan katalis (analisis SAA). Hasil perhitungan energi aktivasi (E_a) menunjukkan bahwa E_a reaksi terkatalisis K/ γ -Al₂O₃ lebih kecil dibanding Ca/ γ -Al₂O₃ yang mengindikasikan aktivitas katalitik logam K lebih tinggi dibanding Ca. Indikasi ini ditunjukkan dari yield produk FAME reaksi terkatalisis K/ γ -Al₂O₃ lebih tinggi dibanding reaksi terkatalisis Ca/ γ -Al₂O₃. Analisis lebih jauh menunjukkan bahwa kualitas produk FAME hasil reaksi terkatalisis K/ γ -Al₂O₃ lebih baik dibanding Ca/ γ -Al₂O₃.

ACKNOWLEDGEMENT

Penulis mengucapkan terimakasih kepada Laboratorium Teknik Kimia, Institut Teknologi Sepuluh Nopember (ITS) Surabaya yang telah memfasilitasi penelitian ini.

DAFTAR PUSTAKA

- [1] G. A. Nur Rohman, F. Fatmawati, and M. Mahfud, "Pembuatan Biodiesel dari Minyak Kelapa Menggunakan Microwave: Penggunaan Katalis KOH dengan Konsentrasi Rendah," *J. Tek. ITS*, vol. 5, no. 2, pp. 225–227, 2016.
- [2] N. D. Mastutik, Heriyanti, L. S. Marningsih, and R. Basuki, "Bio-gasoline production of used cooking palm oil catalyzed by metal supported catalyst Ni/Natural Zeolite (Ni/NZ)," in *Journal* of *Physics: Conference Series*, 2018, vol. 1116, pp. 1–7.
- E. Supriadi, L. Marlinda, D. H. Prajitno, and M. Mahfud, "Transesterification of coconut oil for FAME production using ultrasound," in *AIP Conference Proceedings*, 2017, vol. 1840, no. 1, p. 40007.
- [4] N. Y. Yahya, N. Ngadi, S. Wong, and O. Hassan, "Transesterification of used cooking oil (UCO) catalyzed by mesoporous calcium titanate: Kinetic and thermodynamic studies," *Energy Convers. Manag. Manag.*, vol. 164, no. March, pp. 210–218, 2018.
- [5] D. D. Pukale, G. L. Maddikeri, P. R. Gogate, A. B. Pandit, and A. P. Pratap, "Ultrasonics Sonochemistry Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst," *Ultrason. -Sonochemistry*, vol. 22, pp. 278–286, 2015.
- [6] M. Ulfah and S. Subagjo, "Pengaruh Perbedaan Sifat Penyangga Alumina Terhadap Sifat Katalis Hydrotreating Berbasis Nikel-Molibdenum," *Reaktor*, vol. 14, no. 2, p. 151, 2012.
- [7] D. P. Ningtyas, "PENGARUH KATALIS BASA (NaOH) PADA TAHAP REAKSI TRANSESTERIFIKASI TERHADAP KUALITAS BIOFUEL DARI MINYAK TEPUNG IKAN SARDIN," J. Teknosains, vol. 2, no. 2, pp. 103–114, 2013.
- [8] W. Wahyudin, A. H. Tambunan, N. Purwanti, J. Joelianingsih, and H. Nabetani, "Tinjauan Perkembangan Proses Katalitik Heterogen dan Non-Katalitik untuk Produksi Biodiesel," *J. Keteknikan Pertan.*, vol. 6, no. 2, pp. 123–130, 2018.
- [9] N. F. Fatimah and B. Utami, "Sintesis dan

Analisis Spektra IR, Difraktogram XRD, SEM pada Material Katalis Berbahan Ni/zeolit Alam Teraktivasi dengan Metode Impregnasi," *JC-T* (*Journal Cis-Trans*) *J. Kim. Dan Ter.*, vol. 1, no. 1, 2017.

- [10] B. Benlahreche, A. Taleb, M. B. Lahrech, and S. Hacini, "Isatin Aldazines Synthesis using A Proton Exchanged Algerian Montmorillonite Clay as Acid Eco-friendly Catalyst," *Bull. Chem. React. Eng.* \& *Catal.*, vol. 14, no. 3, pp. 551–558, 2019.
- [11] T. R. Agusti, D. Agustine, and I. Nurlatifah, "Esterifikasi Gliserol Produk Samping Biodiesel Menjadi Triasetin Menggunakan Katalis SO₄₂₋/TiO₂," *J. Ilm. Fak. Tek.*, vol. 1, no. 3, pp. 290– 297, 2020.
- [12] J. Monde, P. I. Kumalasari, and K. Nugroho, "Perengkahan Metil Ester dari Minyak Jelantah Menggunakan Katalis Pt/Al₂O₃," *CHEESA Chem. Eng. Res. Artic.*, vol. 2, no. 2, pp. 75–82, 2019.
- [13] L. Marlinda, "Rekayasa Katalis Double Promotor Berbasis Hierarchical H-ZSM-5 untuk Memproduksi Biofuel dari Minyak Nabati," Institut Teknologi Sepuluh Nopember, 2017.
- [14] N. Ain, R. Rodiansono, and K. Mustikasari, "Efek Temperatur, Tekanan dan Waktu Reaksi pada Hidrogenasi Asam Heksadekanoat Menjadi 1-Eksadekanol Menggunakan Katalis Ru-Sn (3, 0)/C," J. Kim. Sains dan Apl., vol. 22, no. 4, pp. 112–122, 2019.
- [15] K. Noiroj, P. Intarapong, A. Luengnaruemitchai, and S. Jai-In, "A comparative study of KOH/Al₂O₃ and KOH/NaY catalysts for biodiesel production via transesterification from palm oil," Renew. energy, vol. 34, no. 4, pp. 1145-1150, 2009.
- [16] N. Pasupulety, K. Gunda, Y. Liu, G. L. Rempel, and F. T. T. Ng, "Production of biodiesel from soybean oil on CaO/Al₂O₃ solid base catalysts," *Appl. Catal. A Gen.*, vol. 452, pp. 189–202, 2013.
- [17] J.-H. Yi, Y.-Y. Sun, J.-F. Gao, and C.-Y. Xu, "Synthesis of crystalline γ-Al₂O₃ with high purity," *Trans. Nonferrous Met. Soc. China*, vol. 19, no. 5, pp. 1237–1242, 2009.
- [18] A. H. Fakeeha *et al.*, "Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane," *Processes*, vol. 8, no. 5, p. 522, 2020.
- [19] Y.-H. Chen *et al.*, "Biodiesel production in a rotating packed bed using K/γ-Al₂O₃ solid catalyst," *J. Taiwan Inst. Chem. Eng.*, vol. 42, no. 6, pp. 937–944, 2011.
- [20] P. Kutálek, L. Čapek, L. Smoláková, D. Kubička, and M. Hájek, "Aspects of stability of K/Al₂O₃ catalysts for the transesterification of rapeseed oil in batch and fixed-bed reactors," *Chinese J. Catal.*, vol. 35, no. 7, pp. 1084–1090, 2014.
- [21] G. Chen, R. Shan, J. Shi, and B. Yan, "Ultrasonic-assisted production of biodiesel

from transesterification of palm oil over ostrich eggshell-derived CaO catalysts," *Bioresour. Technol.*, vol. 171, pp. 428–432, 2014.

- [22] M. Hájek, F. Skopal, L. Čapek, M. Černoch, and P. Kutálek, "Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO," *Energy*, vol. 48, no. 1, pp. 392–397, 2012.
- [23] O. Ilgen and A. N. Akin, "Development of alumina supported alkaline catalysts used for biodiesel production," *Turkish J. Chem.*, vol. 33, no. 2, pp. 281–287, 2009.
- [24] R. Alviany, M. P. Marbun, F. Kurniawansyah, and A. Roesyadi, "Proses produksi katalis gamma-Al₂O₃ menggunakan metode impregnasi," *J. Tek. Kim.*, vol. 12, no. 2, pp. 64–68, 2018.
- [25] H. Nayebzadeh, N. Saghatoleslami, M. Haghighi, and M. Tabasizadeh, "Catalytic Activity of KOH--CaO--Al 2 O 3 Nanocomposites in Biodiesel Production: Impact of Preparation Method," *Int. J. Self-Propagating High-Temperature Synth.*, vol. 28, no. 1, pp. 18–27, 2019.
- [26] A. G. Volkov, S. Paula, and D. W. Deamer, "Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers," *Bioelectrochemistry Bioenerg.*, vol. 42, no. 2, pp. 153–160, 1997.
- [27] N. P. Asri, K. Budikarjono, Suprapto, and A. Roesyadi, "Kinetics of palm oil transesterification using double promoted catalyst CaO/KI/γ-Al₂O₃," *J. Eng. Technol. Sci.*, vol. 47, no. 4, pp. 353–363, 2015.
- [28] V. Singh, M. Yadav, and Y. C. Sharma, "Effect of co-solvent on biodiesel production using calcium aluminium oxide as a reusable catalyst and waste vegetable oil," *Fuel*, vol. 203, pp. 360–369, 2017.
- [29] A. Bouaid, R. Vázquez, M. Martinez, and J. Aracil, "Effect of free fatty acids contents on biodiesel quality. Pilot plant studies," *Fuel*, vol. 174, no. February 2019, pp. 54–62, 2016.